

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2008-80112
(P2008-80112A)

(43) 公開日 平成20年4月10日(2008.4.10)

(51) Int.Cl.

A61B 1/06 (2006.01)
A61B 1/00 (2006.01)
G02B 23/26 (2006.01)

F 1

A 6 1 B 1/06
A 6 1 B 1/00
G 0 2 B 23/26

A
300D
B

テーマコード (参考)

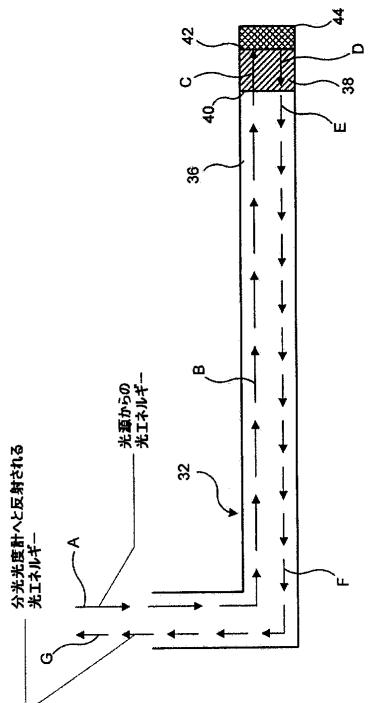
2 H040
4 CO61

審査請求 有 請求項の数 34 O.L. 外国語出願 (全 53 頁)

(21) 出願番号 特願2007-222825 (P2007-222825)
(22) 出願日 平成19年8月29日 (2007. 8. 29)
(31) 優先権主張番号 11/512, 918
(32) 優先日 平成18年8月30日 (2006. 8. 30)
(33) 優先権主張国 米国 (US)

(71) 出願人 505289661
カール・ストーツ・エンドヴィジョン・インコーポレーテッド
アメリカ合衆国・01507・マサチューセッツ・チャールトン・カーペンター・ヒル・ロード・91
(74) 代理人 100064908
弁理士 志賀 正武
(74) 代理人 100089037
弁理士 渡邊 隆
(74) 代理人 100108453
弁理士 村山 靖彦
(74) 代理人 100110364
弁理士 実広 信哉

最終頁に続く


(54) 【発明の名称】 温度に基づいた光源制御を備えた内視鏡デバイス

(57) 【要約】

【課題】温度に基づいた光源制御を備えた内視鏡デバイスを提供する。

【解決手段】内視鏡システムは、中を通って遠位端へ向かう光ガイドを有する内視鏡デバイス、内視鏡デバイスと通信し、内視鏡デバイスの光ガイドへと照明光を送る光源、光源と通信し、光ガイドへと送られる照明光の強度を制御する光源制御装置、及び少なくとも一部が内視鏡デバイスに取り付けられた少なくとも1つの温度センサを含む。温度センサは内視鏡デバイスの少なくとも一部分の温度を感知し、感知した温度を表す信号を生成し、信号は光源制御装置へと送られる。光源制御装置は、少なくとも一部は感知した温度を表す信号に基づいて、光ガイドへと送られる照明光の強度を変化させる。

【選択図】図 2

【特許請求の範囲】

【請求項 1】

中を通って遠位端へ向かう光ガイドを有する内視鏡デバイスと、
前記内視鏡デバイスと通信し、該内視鏡デバイスの前記光ガイドへと照明光を送る光源と、

前記光源と通信し、前記内視鏡デバイスの前記光ガイドへと送られる前記照明光の強度を制御する光源制御装置と、

少なくとも一部が前記内視鏡デバイスに取り付けられ、該内視鏡デバイスの少なくとも一部分の温度を感知し、感知した温度を表す信号を生成し、該信号が前記光源制御装置へと送られる少なくとも1つの温度センサとを含み、

前記光源制御装置が、少なくとも一部は前記感知した温度を表す信号に基づいて、前記光ガイドへと送られる前記照明光の強度を変化させる内視鏡システム。

【請求項 2】

前記光源制御装置が、前記感知した温度を閾値より低く維持するように、前記光ガイドへと送られる前記照明光の強度を変化させる、請求項1に記載の内視鏡システム。

【請求項 3】

前記光源制御装置が、前記感知した温度が前記閾値より高い場合、前記光ガイドへと送られる前記照明光の強度を低下させる、請求項2に記載の内視鏡システム。

【請求項 4】

前記内視鏡デバイスが、剛性の内視鏡、半剛性の内視鏡及び可撓性の内視鏡のうち少なくとも1つを含む、請求項1に記載の内視鏡システム。

【請求項 5】

前記少なくとも1つの温度センサが、前記内視鏡デバイスに沿って配設された複数の温度センサを含む、請求項1に記載の内視鏡システム。

【請求項 6】

前記少なくとも1つの温度センサが、
近位端及び遠位端を有する光ファイバと、

前記光ファイバの前記遠位端に隣接して配設された第1の端部及び該第1の端部の反対側の第2の端部を有し、部材の温度に対して既知の関係で変化する光吸收/送信特性を有する材料から形成された部材と、

前記部材の前記第2の端部に隣接して配設された反射面とを含み、

前記光源が前記光ファイバの前記近位端に光エネルギーを供給し、該光エネルギーが前記光ファイバの前記遠位端へと伝播し、前記部材を前記第1の端部から前記第2の端部へと通過し、前記反射面によって反射し、前記部材を前記第2の端部から前記第1の端部へと通過し、前記光ファイバの前記遠位端に入り、前記光ファイバの前記近位端へと伝播し、前記光ファイバの前記近位端から出て、

前記光エネルギーが、前記部材を通過する際に該部材の光学特性によって該部材の温度に応じて変化する、請求項1に記載の内視鏡システム。

【請求項 7】

画像センサを含むイメージングユニットと、
画像の増幅及びイメージングユニットの露出時間を制御し変化させるためのイメージング制御装置とを更に含む、請求項1に記載の内視鏡システム。

【請求項 8】

前記イメージング制御装置が、少なくとも一部は前記感知した温度を表す信号に基づいて、前記画像の増幅及び前記露出時間の少なくとも1つを変化させる、請求項7に記載の内視鏡システム。

【請求項 9】

前記イメージング制御装置が、前記照明光の強度を変化させる前記光源制御装置と同期して、前記画像の増幅及び露出時間の少なくとも1つを変化させる、請求項7に記載の内視鏡システム。

【請求項 10】

前記光源が発光ダイオード及びダイオードレーザの少なくとも1つを含む、請求項1に記載の内視鏡システム。

【請求項 11】

冷却システムを更に含み、該冷却システムが少なくとも一部は前記感知した温度を表す信号に基づいて作動する、請求項1に記載の内視鏡システム。

【請求項 12】

アラームを更に含み、該アラームが少なくとも一部は前記感知した温度を表す信号に基づいて作動する、請求項1に記載の内視鏡システム。

【請求項 13】

内視鏡デバイスの少なくとも一部分の温度を感知するための少なくとも1つの温度センサを有する内視鏡デバイスを含む内視鏡システムであって、前記少なくとも1つの温度センサが、

近位端及び遠位端を有する光ファイバと、

前記光ファイバの前記遠位端に隣接して配設された第1の端部及び該第1の端部の反対側の第2の端部を有し、部材の温度に対して既知の関係で変化する光吸收／送信特性を有する材料から形成された部材と、

前記部材の前記第2の端部に隣接して配設された反射面とを含み、

光エネルギーが前記光ファイバの前記近位端に供給され、前記光ファイバの前記遠位端へと伝播し、前記部材を前記第1の端部から前記第2の端部へと通過し、前記反射面によって反射し、前記部材を前記第2の端部から前記第1の端部へと通過し、前記光ファイバの前記遠位端に入り、前記光ファイバの前記近位端へと伝播し、前記光ファイバの前記近位端から出て、

前記光エネルギーが、前記部材を通過する際に該部材の光学特性によって該部材の温度に応じて変化する内視鏡システム。

【請求項 14】

前記少なくとも1つの温度センサが、前記光ファイバの前記近位端を出る光エネルギーの特性を分析し、それを表す信号を生成するための光エネルギー分析装置を更に含む、請求項13に記載の内視鏡システム。

【請求項 15】

前記光エネルギー分析装置が分光光度計を含む、請求項14に記載の内視鏡システム。

【請求項 16】

前記少なくとも1つの温度センサが、少なくとも一部は前記光ファイバの前記近位端を出る光エネルギーの特性を表す信号に基づいて、かつ少なくとも一部は前記部材の光吸收／送信特性と該部材の温度との既知の関係に基づいて、該部材の温度を判断するための温度分析装置を更に含む、請求項14に記載の内視鏡システム。

【請求項 17】

前記少なくとも1つの温度センサが、前記部材の温度を表示するための温度表示器を更に含む、請求項16に記載の内視鏡システム。

【請求項 18】

前記内視鏡デバイスと通信し、該内視鏡デバイスの光ガイドへと照明光を送る光源と、前記光源と通信し、前記内視鏡デバイスの前記光ガイドへと送られる前記照明光の強度を制御する光源制御装置とを更に含み、

前記光源制御装置が、少なくとも一部は前記少なくとも1つの温度センサによって感知した温度に基づいて、前記光ガイドへと送られる前記照明光の強度を変化させる、請求項13に記載の内視鏡システム。

【請求項 19】

中を通って遠位端へ向かう光ガイドを有する内視鏡デバイスと、

前記内視鏡デバイスと通信し、該内視鏡デバイスの前記光ガイドへと照明光を送る光源と、

10

20

30

40

50

前記光源と通信し、前記内視鏡デバイスの前記光ガイドへと送られる前記照明光の強度を制御する光源制御装置と、

近位端及び遠位端を有する光ファイバ、

前記光ファイバの前記遠位端に隣接して配設された第1の端部及び該第1の端部の反対側の第2の端部を有し、部材の温度に対して既知の関係で変化する光吸收／送信特性を有する材料から形成された部材、

前記部材の前記第2の端部に隣接して配設された反射面を含み、

光エネルギーが前記光ファイバの前記近位端に供給され、前記光ファイバの前記遠位端へと伝播し、前記部材を前記第1の端部から前記第2の端部へと通過し、前記反射面によって反射し、前記部材を前記第2の端部から前記第1の端部へと通過し、前記光ファイバの前記遠位端に入り、前記光ファイバの前記近位端へと伝播し、前記光ファイバの前記近位端から出て、

前記光エネルギーが、前記部材を通過する際に該部材の光学特性によって該部材の温度に応じて変化し、

前記光ファイバの前記近位端を出る光エネルギーの特性を分析し、それを表す信号を生成するための光エネルギー分析装置、及び

少なくとも一部は前記光ファイバの前記近位端を出る光エネルギーの特性を表す信号に基づいて、かつ少なくとも一部は前記部材の光吸收／送信特性と該部材の温度との既知の関係に基づいて、該部材の温度を判断するための温度分析装置を含み、該温度分析装置が判断された前記部材の温度を表す信号を生成し前記光源制御装置へと送る、少なくとも1つの温度センサとを含み、

前記光源制御装置が、少なくとも一部は前記判断された前記部材の温度を表す信号に基づいて、前記光ガイドへと送られる前記照明光の強度を変化させる内視鏡システム。

【請求項20】

内視鏡システムを制御する方法であつて、

中を通じて遠位端へ向かう光ガイドを有する内視鏡デバイスを設ける段階と、

前記内視鏡デバイスと通信する光源を使用して、該内視鏡デバイスの前記光ガイドへと照明光を送る段階と、

少なくとも一部分が前記内視鏡デバイスに取り付けられた少なくとも1つの温度センサを使用して、前記内視鏡デバイスの少なくとも一部の温度を感知し、感知した温度を表す信号を生成する段階と、

前記感知した温度を表す信号を光源制御装置へと送る段階と、

少なくとも一部は前記感知した温度を表す信号に基づいて、前記光源制御装置を使用して、前記光ガイドへと送られる前記照明光の強度を自動的に変化させる段階とを含む方法。

【請求項21】

前記変化させる段階が、前記感知した温度を閾値より低く維持するように、少なくとも一部は前記感知した温度を表す信号に基づいて、前記光源制御装置を使用して、前記光ガイドへと送られる前記照明光の強度を自動的に変化させる段階を含む、請求項20に記載の内視鏡システムを制御する方法。

【請求項22】

前記変化させる段階が、前記感知した温度を表す信号が前記感知した温度が前記閾値より高いことを示す場合、前記光源制御装置を使用して、前記光ガイドへと送られる前記照明光の強度を自動的に低下させる段階を含む、請求項21に記載の内視鏡システムを制御する方法。

【請求項23】

前記照明光の強度を低下させると、受け取った画像の輝度を増加させるように、該受け取った画像の2つ以上のピクセルをピクセルピニングによってグループ化する段階を更に含む、請求項22に記載の方法。

【請求項24】

10

20

30

40

50

前記少なくとも1つの温度センサが、前記内視鏡デバイスに沿って配設された複数の温度センサを含む、請求項20に記載の内視鏡システムを制御する方法。

【請求項25】

前記感知する段階が、

近位端及び遠位端を有する光ファイバを設ける段階と、

前記光ファイバの前記遠位端に隣接する第1の端部及び該第1の端部の反対側の第2の端部を備え、部材の温度に対して既知の関係で変化する光吸收／送信特性を有する材料を含む部材を配設する段階と、

前記部材の前記第2の端部に隣接する反射面を配設する段階と、

光エネルギーを前記光ファイバの前記近位端へ供給し、前記光エネルギーを前記光ファイバの前記遠位端へと伝播させ、前記光エネルギーを前記第1の端部から前記第2の端部へと前記部材を通過させ、前記光エネルギーを前記反射面によって反射させ、前記光エネルギーを前記第2の端部から前記第1の端部へと前記部材を通過させ、前記光エネルギーを前記光ファイバの前記遠位端に入らせ、前記光エネルギーを前記光ファイバの前記近位端へと伝播させ、前記光エネルギーを前記光ファイバの前記近位端から出させる段階とを含み、

前記光エネルギーが、前記部材を通過する際に該部材の光学特性によって該部材の温度に応じて変化する、請求項20に記載の内視鏡システムを制御する方法。

【請求項26】

前記内視鏡デバイスがイメージングユニットを含み、

少なくとも一部は前記感知した温度を表す信号に基づいて、画像の増幅及びイメージングユニットの露出時間の少なくとも1つを変化させる段階を更に含む、請求項20に記載の方法。

【請求項27】

前記内視鏡デバイスがイメージングユニットを含み、

前記照明光の強度の変化と同期して、画像の増幅及びイメージングユニットの露出時間の少なくとも1つを変化させる段階を更に含む、請求項20に記載の方法。

【請求項28】

内視鏡デバイスの少なくとも一部分の温度を感知するための方法であって、

近位端及び遠位端を有する光ファイバを設ける段階と、

前記光ファイバの前記遠位端に隣接して配設される第1の端部及び該第1の端部の反対側の第2の端部を備え、部材の温度に対して既知の関係で変化する光吸收／送信特性を有する材料を含む部材を配設する段階と、

前記部材の前記第2の端部に隣接する反射面を配設する段階と、

光エネルギーを前記光ファイバの前記近位端へ供給し、前記光エネルギーを前記光ファイバの前記遠位端へと伝播させ、前記光エネルギーを前記第1の端部から前記第2の端部へと前記部材を通過させ、前記光エネルギーを前記反射面によって反射させ、前記光エネルギーを前記第2の端部から前記第1の端部へと前記部材を通過させ、前記光エネルギーを前記光ファイバの前記遠位端に入らせ、前記光エネルギーを前記光ファイバの前記近位端へと伝播させ、前記光エネルギーを前記光ファイバの前記近位端から出させる段階とを含み、

前記光エネルギーが、前記部材を通過する際に該部材の光学特性によって該部材の温度に応じて変化する方法。

【請求項29】

前記光ファイバの前記近位端を出る光エネルギーの特性を分析し、それを表す信号を生成する段階を更に含む、請求項28に記載の内視鏡デバイスの少なくとも一部分の温度を感知するための方法。

【請求項30】

前記分析する段階が分光光度計を使用して実施される、請求項29に記載の内視鏡デバイスの少なくとも一部分の温度を感知するための方法。

10

20

30

40

50

【請求項 3 1】

少なくとも一部は前記光ファイバの前記近位端を出る光エネルギーの特性を表す信号に基づいて、かつ少なくとも一部は前記部材の光吸收／送信特性と該部材の温度との既知の関係に基づいて、該部材の温度を判断する段階を更に含む、請求項 2 9 に記載の内視鏡デバイスの少なくとも一部分の温度を感知するための方法。

【請求項 3 2】

前記部材の温度を表示する段階を更に含む、請求項 3 1 に記載の内視鏡デバイスの少なくとも一部分の温度を感知するための方法。

【請求項 3 3】

前記感知した温度を使用して、前記内視鏡デバイスに供給される照明光の強度を変化させる段階を更に含む、請求項 2 8 に記載の内視鏡デバイスの少なくとも一部分の温度を感知するための方法。

10

【請求項 3 4】

内視鏡システムを制御する方法であって、

中を通じて遠位端へ向かう光ガイドを有する内視鏡デバイスを設ける段階と、

前記内視鏡デバイスと通信する光源を使用して、該内視鏡デバイスの前記光ガイドへと照明光を送る段階と、

近位端及び遠位端を有する光ファイバを設ける段階と、

前記光ファイバの前記遠位端に隣接して配設される第 1 の端部及び該第 1 の端部の反対側の第 2 の端部を備え、部材の温度に対して既知の関係で変化する光吸收／送信特性を有する材料を含む部材を配設する段階と、

20

前記部材の前記第 2 の端部に隣接する反射面を配設する段階と、

光エネルギーを前記光ファイバの前記近位端へ供給し、前記光エネルギーを前記光ファイバの前記遠位端へと伝播させ、前記光エネルギーを前記第 1 の端部から前記第 2 の端部へと前記部材を通過させ、前記光エネルギーを前記反射面によって反射させ、前記光エネルギーを前記第 2 の端部から前記第 1 の端部へと前記部材を通過させ、前記光エネルギーを前記光ファイバの前記遠位端に入らせ、前記光エネルギーを前記光ファイバの前記近位端へと伝播させ、前記光エネルギーを前記光ファイバの前記近位端から出させ、

前記光エネルギーが、前記部材を通過する際に該部材の光学特性によって該部材の温度に応じて変化する段階と、

30

前記光ファイバの前記近位端から出る光エネルギーの特性を分析し、それを表す信号を生成する段階と、

少なくとも一部は前記光ファイバの前記近位端を出る光エネルギーの特性を表す信号に基づいて、かつ少なくとも一部は前記部材の光吸收／送信特性と該部材の温度との既知の関係に基づいて、該部材の温度を判断する段階と、

少なくとも一部は前記判断された前記部材の温度に基づいて、光源制御装置を使用して、前記光ガイドへと送られる前記照明光の強度を自動的に変化させる段階とを含む方法。

【発明の詳細な説明】

【技術分野】

【0 0 0 1】

40

本発明は、一般に内視鏡デバイスに照明光を供給するための光源を含む内視鏡システムに関し、より詳細には、光源が温度関連のフィードバックに基づいて自動的に制御される内視鏡システムに関する。

【背景技術】

【0 0 0 2】

50

医学及び獣医学の分野では、内視鏡による体表面の画像化が良く知られている。これは一般に、内視鏡を体内管腔へと挿入し、強力な光源出力を内視鏡を通して体内組織に向けることを伴う。次いで、体内組織によって反射した光が光路に沿って導かれ、（旧来型内視鏡の場合は）組織を直接視認するためにアイピースへ、または（電子内視鏡の場合は）組織のビデオ画像を生成する画像センサへと向かう。

【0003】

光源から放射される照明光は、光ガイド等を通って内視鏡の挿入ユニット部分の遠位部に伝播される。照明光は、遠位部を通り照明光学システムによって、病変または他の体内組織などの対象領域に照射される。

【0004】

旧来型内視鏡の場合、挿入ユニットの遠位部に配置された対物レンズによって対象領域の画像が生成される。光学送信手段を使用して光学画像がアイピースへと送られる。次いで、アイピースの光学システムによって光学画像を見ることができる。光学送信手段は、使用方法または使用目的によって様々である。例えば、可撓性の内視鏡との組合せでは一般にファイバ束が使用され、剛性の内視鏡との組合せでは一般にリレーレンズシステムが使用される。

10

【0005】

CCDなどソリッドステートイメージングデバイスを含む電子内視鏡では、挿入ユニット遠位部に、対物レンズによってCCDの画像生成面に光学画像が生成される。CCDは、画像情報を電気信号の形で送るように光学画像を光電変換する。画像情報は様々な種類の画像処理を受け、対象領域の望ましい画像がモニター等に表示される。

【0006】

従来の内視鏡デバイスの短所は、旧来型のものであるか電子式のものであるかにかかわらず、観察する領域または管腔を照らすために必要な高い光エネルギーが通過するために使用中に高温になる場合があることである。これは特に金属の本体を有する剛性の内視鏡にあてはまるが、過剰な加熱は半剛性または可撓性の内視鏡デバイスとの関連でも起きることがある。内視鏡デバイスの露出部分の温度は50℃を超えない、または適用可能な基準で許容されるものであることが望ましい。

20

【0007】

内視鏡デバイスの温度は、それを通過する光の強度を調整することによって変えることができることが、十分に理解されている。従来、これは光源制御装置のダイアル等を手動で調整して照明光の強度を増加または減少させることによって達成された。しかし、この手法では、オペレータの注意が実施中の医療処置からそれるため、問題が多い。更に、閾値温度を超えないようにするため、また同時に視野を改善するために照明光の強度を安全に可能な限り高く維持するために、光の強度をどの程度変化させるべきかを詳細に知ることは難しい。感知した温度に基づいて自動化された制御ソリューションが、はるかに望ましい。

30

【0008】

あらかじめ定めた長さの時間が経過すると光源が切れるもの（特許文献1）、光源が表面に方向付けられていないと光源が切れるもの（特許文献2）、収集した画像を最適化するために、CCDなどのイメージングユニットによって生成された画像信号に基づいて光の強度を設定するもの（特許文献3及び特許文献4）など、光源に対してある程度の自動化された制御を行なう従来技術のシステムがあることが知られているが、出願人は、内視鏡デバイスのいくつかの部分で感知した温度に基づいて照明光の強度を制御するシステムがあるとは考えていない。

40

【0009】

この理由の1つは、従来のタイプの温度センサは内視鏡デバイスに沿って温度を測定する際の使用には適していないことである場合がある。例えば、温度を測定するための熱電対の適用は良く知られているが、そのようなデバイスは、多くの理由から内視鏡に沿った温度の測定と関連して効果的に使用することができない。より詳細には、熱電対は一般に内視鏡デバイス内部で利用可能な容積に対して比較的大きく、熱電対は電圧を発生する電気デバイスであり、従って患者の安全性を損なう可能性があり、かつ熱電対は機械的ワイヤ接続を必要とし、内視鏡デバイスは一般にオートクレーブしなければならないため問題となることがある。

【特許文献2】米国特許第6,511,422号明細書

【特許文献3】米国特許第5,131,381号明細書

【特許文献4】米国特許第5,957,834号明細書

【発明の開示】

【発明が解決しようとする課題】

【0010】

従って、安全性を強化し患者が火傷を負う可能性を低減し、内視鏡デバイスの温度が閾値温度を超えないようにし、内視鏡デバイスのいくつかの部分で感知した温度に基づいて照明光の強度を自動的に制御し、一般的な内視鏡デバイスの内部で利用可能な容積内に収まることのできる温度センサを使用し、電圧を発生せず、従って患者の安全性を損なわない温度センサを使用し、内視鏡デバイスが簡単にオートクレーブできるように機械的ワイヤ接続を必要としない温度センサを使用する、内視鏡システムが望ましい。

10

【課題を解決するための手段】

【0011】

従って、本発明の目的は、安全性を強化し患者が火傷を負う可能性を低減した内視鏡システムを提供することである。

【0012】

本発明の別の目的は、上述の特徴を有し、内視鏡デバイスの温度が閾値温度を超えないようにする内視鏡システムを提供することである。

20

【0013】

本発明の他の目的は、上述の特徴を有し、内視鏡デバイスのいくつかの部分で感知した温度に基づいて照明光の強度を自動的に制御する内視鏡システムを提供することである。

【0014】

本発明の更に別の目的は、上述の特徴を有し、一般的な内視鏡デバイスの内部で利用可能な容積内に収まることのできる温度センサを使用する内視鏡システムを提供することである。

【0015】

本発明の更に他の目的は、上述の特徴を有し、電圧を発生せず、従って患者の安全性を損なわない温度センサを使用する内視鏡システムを提供することである。

30

【0016】

本発明の更に他の目的は、上述の特徴を有し、内視鏡デバイスが簡単にオートクレーブできるように機械的ワイヤ接続を必要としない温度センサを使用する内視鏡システムを提供することである。

【0017】

これら及び他の目的は、中を通じて遠位端へ向かう光ガイドを有する内視鏡デバイス、内視鏡デバイスと通信し、内視鏡デバイスの光ガイドへと照明光を送る光源、光源と通信し、内視鏡デバイスの光ガイドへと送られる照明光の強度を制御する光源制御装置、及び少なくとも一部分が内視鏡デバイスに取り付けられた少なくとも1つの温度センサを有する内視鏡システムを本発明の一実施形態に従って提供することによって達成される。少なくとも1つの温度センサが内視鏡デバイスの少なくとも一部分の温度を感知し、感知した温度を表す信号を生成し、信号は光源制御装置へと送られる。光源制御装置は、少なくとも一部は感知した温度を表す信号に基づいて、光ガイドへと送られる照明光の強度を変化させる。

40

【0018】

いくつかの実施形態では、光源制御装置は、感知した温度を閾値より低く維持するように、光ガイドへと送られる照明光の強度を変化させる。これらのうちのある実施形態では、光源制御装置は、感知した温度が閾値より高い場合、光ガイドへと送られる照明光の強度を低下させる。いくつかの実施形態では、内視鏡デバイスは、剛性の内視鏡、半剛性の内視鏡及び可撓性の内視鏡の少なくとも1つである。いくつかの実施形態では、少なくとも1つの温度センサは内視鏡デバイスに沿って配設された複数の温度センサの形をとる。

50

【0019】

いくつかの実施形態では、少なくとも1つの温度センサは、近位端及び遠位端を有する光ファイバ、光ファイバの遠位端に隣接して配設された第1の端部及び第1の端部の反対側の第2の端部を有し、部材の温度に対して既知の関係で変化する光吸収／送信特性を有する材料から形成された部材、及び部材の第2の端部に隣接して配設された反射面を含む。これらの実施形態では、光源は光ファイバの近位端に光エネルギーを供給し、光エネルギーは光ファイバの遠位端へと伝播し、部材を第1の端部から第2の端部へと通過し、反射面によって反射し、部材を第2の端部から第1の端部へと通過し、光ファイバの遠位端に入り、光ファイバの近位端へと伝播し、光ファイバの近位端から出る。光エネルギーは、部材を通過する際に部材の光学特性によって部材の温度に応じて変化する。

10

【0020】

本発明の別の実施形態によると、内視鏡システムは内視鏡デバイスの少なくとも一部分の温度を感知するための少なくとも1つの温度センサを有する内視鏡デバイスを含む。少なくとも1つの温度センサは、近位端及び遠位端を有する光ファイバ、光ファイバの遠位端に隣接して配設された第1の端部及び第1の端部の反対側の第2の端部を有し、部材の温度に対して既知の関係で変化する光吸収／送信特性を有する材料から形成された部材、及び部材の第2の端部に隣接して配設された反射面を含む。光エネルギーが光ファイバの近位端に供給され、光ファイバの遠位端へと伝播し、部材を第1の端部から第2の端部へと通過し、反射面によって反射し、部材を第2の端部から第1の端部へと通過し、光ファイバの遠位端に入り、光ファイバの近位端へと伝播し、光ファイバの近位端から出る。光エネルギーは、部材を通過する際に部材の光学特性によって部材の温度に応じて変化する。

20

【0021】

いくつかの実施形態では、少なくとも1つの温度センサは、光ファイバの近位端を出る光エネルギーの特性を分析し、それを表す信号を生成するための光エネルギー分析装置を更に含む。これらのうちのある実施形態では、光エネルギー分析装置は分光光度計である。ある実施形態では、少なくとも1つの温度センサは、少なくとも一部は光ファイバの近位端を出る光エネルギーの特性を表す信号に基づいて、かつ少なくとも一部は部材の光吸収／送信特性と部材の温度との既知の関係に基づいて、部材の温度を判断するための温度分析装置を更に含む。これらのうちのある実施形態では、少なくとも1つの温度センサは部材の温度を表示するための温度表示器を更に含む。

30

【0022】

いくつかの実施形態では、内視鏡システムは、内視鏡デバイスと通信し、内視鏡デバイスの光ガイドに照明光を送る光源、光源と通信し、内視鏡デバイスの光ガイドへと送られる照明光の強度を制御する光源制御装置を更に含む。これらの実施形態では、光源制御装置は、少なくとも一部は少なくとも1つの温度センサによって感知した温度に基づいて、光ガイドへと送られる照明光の強度を変化させる。

40

【0023】

本発明の他の実施形態によると、内視鏡システムは、中を通って遠位端へ向かう光ガイドを有する内視鏡デバイス、内視鏡デバイスと通信し、内視鏡デバイスの光ガイドへと照明光を送る光源、光源と通信し、内視鏡デバイスの光ガイドへと送られる照明光の強度を制御する光源制御装置、及び少なくとも1つの温度センサを含む。温度センサは、近位端及び遠位端を有する光ファイバ、光ファイバの遠位端に隣接して配設された第1の端部及び第1の端部の反対側の第2の端部を有し、部材の温度に対して既知の関係で変化する光吸収／送信特性を有する材料から形成された部材、及び部材の第2の端部に隣接して配設された反射面を含む。光エネルギーが光ファイバの近位端に供給され、光ファイバの遠位端へと伝播し、部材を第1の端部から第2の端部へと通過し、反射面によって反射し、部材を第2の端部から第1の端部へと通過し、光ファイバの遠位端に入り、光ファイバの近位端へと伝播し、光ファイバの近位端から出る。光エネルギーは、部材を通過する際に部材の光学特性によって部材の温度に応じて変化する。内視鏡システムは、光ファイバの近

50

位端を出る光エネルギーの特性を分析し、それを表す信号を生成するための光エネルギー分析装置、及び少なくとも一部は光ファイバの近位端を出る光エネルギーの特性を表す信号に基づいて、かつ少なくとも一部は部材の光吸収／送信特性と部材の温度との既知の関係に基づいて、部材の温度を判断するための温度分析装置を更に含む。温度分析装置は判断された部材の温度を表す信号を生成し光源制御装置へと送り、光源制御装置は、少なくとも一部は判断された部材の温度を表す信号に基づいて、光ガイドへと送られる照明光の強度を変化させる。

【0024】

本発明の更に別の実施形態によると、内視鏡システムを制御する方法は、(i)中を通じて遠位端へ向かう光ガイドを有する内視鏡デバイスを設ける段階、(ii)内視鏡デバイスと通信する光源を使用して、内視鏡デバイスの光ガイドへと照明光を送る段階、(iii)少なくとも一部分が内視鏡デバイスに取り付けられた少なくとも1つの温度センサを使用して、内視鏡デバイスの少なくとも一部の温度を感知し、感知した温度を表す信号を生成する段階、(iv)感知した温度を表す信号を光源制御装置へと送る段階、及び(v)少なくとも一部は感知した温度を表す信号に基づいて、光源制御装置を使用して、光ガイドへと送られる照明光の強度を自動的に変化させる段階を含む。

10

【0025】

いくつかの実施形態では、変化させる段階(v)は、感知した温度を閾値より低く維持するように、少なくとも一部は感知した温度を表す信号に基づいて、光源制御装置を使用して、光ガイドへと送られる照明光の強度を自動的に変化させる段階を含む。これらのうちのある実施形態では、変化させる段階(v)は、感知した温度を表す信号が感知した温度が閾値より高いことを示す場合、光源制御装置を使用して、光ガイドへと送られる照明光の強度を自動的に低下させる段階を含む。いくつかの実施形態では、少なくとも1つの温度センサは内視鏡デバイスに沿って配設された複数の温度センサの形をとる。

20

【0026】

いくつかの実施形態では、感知する段階(iii)は、(a)近位端及び遠位端を有する光ファイバを設ける段階、(b)光ファイバの遠位端に隣接する第1の端部及び第1の端部の反対側の第2の端部を備え、部材の温度に対して既知の関係で変化する光吸収／送信特性を有する材料から形成された部材を配設する段階、(c)部材の第2の端部に隣接する反射面を配設する段階、及び(d)光エネルギーを光ファイバの近位端へ供給し、光エネルギーを光ファイバの遠位端へと伝播させ、光エネルギーを第1の端部から第2の端部へと部材を通過させ、光エネルギーを反射面によって反射させ、光エネルギーを第2の端部から第1の端部へと部材を通過させ、光エネルギーを光ファイバの遠位端に入らせ、光エネルギーを光ファイバの近位端へと伝播させ、光エネルギーを光ファイバの近位端から出させる段階を含む。これらの実施形態では、光エネルギーは、部材を通過する際に部材の光学特性によって部材の温度に応じて変化する。

30

【0027】

本発明の更に他の実施形態によれば、内視鏡デバイスの少なくとも一部の温度を感知する方法は、(i)近位端及び遠位端を有する光ファイバを設ける段階、(ii)光ファイバの遠位端に隣接して配設された第1の端部及び第1の端部の反対側の第2の端部を備え、部材の温度に対して既知の関係で変化する光吸収／送信特性を有する材料から形成された部材を配設する段階、(iii)部材の第2の端部に隣接する反射面を配設する段階、及び(iv)光エネルギーを光ファイバの近位端へ供給し、光エネルギーを光ファイバの遠位端へと伝播させ、光エネルギーを第1の端部から第2の端部へと部材を通過させ、光エネルギーを反射面によって反射させ、光エネルギーを第2の端部から第1の端部へと部材を通過させ、光エネルギーを光ファイバの遠位端に入らせ、光エネルギーを光ファイバの近位端へと伝播させ、光エネルギーを光ファイバの近位端から出させる段階を含む。光エネルギーは、部材を通過する際に部材の光学特性によって部材の温度に応じて変化する。

40

【0028】

50

いくつかの実施形態では、内視鏡デバイスの少なくとも一部の温度を感知する方法は、(v)光ファイバの近位端から出る光エネルギーの特性を分析し、それを表す信号を生成する段階を更に含む。これらのうちのある実施形態では、分析する段階(v)は分光光度計を使用して実施される。ある実施形態では、内視鏡デバイスの少なくとも一部の温度を感知する方法は、(vi)少なくとも一部は光ファイバの近位端を出る光エネルギーの特性を表す信号に基づいて、かつ少なくとも一部は部材の光吸收/送信特性と部材の温度との既知の関係に基づいて、部材の温度を判断する段階を更に含む。これらのうちのある実施形態では、内視鏡デバイスの少なくとも一部の温度を感知する方法は、(vii)部材の温度を表示する段階を更に含む。

【0029】

10

いくつかの実施形態では、内視鏡デバイスの少なくとも一部の温度を感知する方法は、(v)感知した温度を使用して、内視鏡デバイスに供給される照明光の強度を変化させる段階を更に含む。

【0030】

20

本発明の更に別の実施形態によると、内視鏡システムを制御する方法は、(i)中を通って遠位端へ向かう光ガイドを有する内視鏡デバイスを設ける段階、(ii)内視鏡デバイスと通信する光源を使用して、内視鏡デバイスの光ガイドへと照明光を送る段階、(iii)近位端及び遠位端を有する光ファイバを設ける段階、(iv)光ファイバの遠位端に隣接して配設された第1の端部及び第1の端部の反対側の第2の端部を備え、部材の温度に対して既知の関係で変化する光吸收/送信特性を有する材料から形成された部材を配設する段階、(v)部材の第2の端部に隣接する反射面を配設する段階、及び(vi)光エネルギーを光ファイバの近位端へ供給し、光エネルギーを光ファイバの遠位端へと伝播させ、光エネルギーを第1の端部から第2の端部へと部材を通過させ、光エネルギーを反射面によって反射させ、光エネルギーを第2の端部から第1の端部へと部材を通過させ、光エネルギーを光ファイバの遠位端に入らせ、光エネルギーを光ファイバの近位端へと伝播させ、光エネルギーを光ファイバの近位端から出させ、光エネルギーが部材を通過する際に部材の光学特性によって部材の温度に応じて変化する段階、(vii)光ファイバの近位端から出る光エネルギーの特性を分析し、それを表す信号を生成する段階、(viii)少なくとも一部は光ファイバの近位端を出る光エネルギーの特性を表す信号に基づいて、かつ少なくとも一部は部材の光吸收/送信特性と部材の温度との既知の関係に基づいて、部材の温度を判断する段階、及び(ix)少なくとも一部は判断された部材の温度に基づいて、光源制御装置を使用して、光ガイドへと送られる照明光の強度を自動的に変化させる段階を含む。

30

【0031】

本発明及びその特定の特徴及び利点は、添付の図面を参照して説明される以下の詳細な説明から、より明らかになるであろう。

【発明を実施するための最良の形態】

40

【0032】

まず図1を参照すると、本発明の例示的な実施形態による内視鏡システム10が示されている。内視鏡システム10は、アイピース、及びレンズシステムまたはファイバ光学システムなどの光学送信手段を備えた旧来型の内視鏡、ビデオ画像を生成するように遠位側に配設されたイメージングユニットまたは近位端に取り付けられたカメラヘッドを有する電子内視鏡、あるいはいくつかの他のタイプの画像視認システムを含むことができる内視鏡デバイス12を含む。いくつかの実施形態では、イメージングユニットは画像センサ(例えば、CCD、CMOS)を含む。内視鏡システム10は、画像の増幅、ゲイン及び/またはイメージングユニットの露出時間を制御し変化させるためのイメージングユニットと通信するイメージング制御装置を更に含むことができる。しかし、当技術分野では多くのタイプの画像収集/視認システムが良く知られており、かつ本発明は画像収集/視認システムではなく照明システムに関するものであることから、本発明に関連して使用することができる多くの画像収集/視認システムは、本願明細書では説明せず、明確性のためそ

50

の要素は図示していない。更に本発明は、限定はされないが、剛性の内視鏡、半剛性の内視鏡、及び可撓性の内視鏡など、既知のまたは後に開発される実質的にどのようなタイプの内視鏡デバイスにも関連して使用することができることに留意されたい。

【0033】

内視鏡デバイス12は、使用中、一般に開口部または体管腔内へと挿入され、組織16を検査するために組織16の方向に向けられる遠位端14を含む。知られているように、一般に開口部または体管腔内には非常にわずかな光しかなく、視認のために組織16を照らすために照明光18を設ける必要がある。一般に、この照明光18は高輝度光源20にあってもたらされ、内視鏡デバイス12を遠位端14へと通る光ガイド22を通って、内視鏡デバイス12の遠位端14へと送られる。

10

【0034】

光ガイド22は、例えば光結合器26等を使用して光源20から光エネルギーを供給される光ケーブル24に連結された光ファイバ束などの形をとることができ。もちろん、光ガイド22は他の形としてもよい。

【0035】

光源20は多くのタイプの既知または未開発の光源を含むことができる。既知の光源の1つのタイプは、増幅器によって起動され、光源の光の強度を設定するように出力制御回路によって制御される、白熱電球（キセノン電球または他のタイプ）を使用する高輝度光源である。もちろん、機械的な絞りまたはアイリス、液晶シャッター、回転リードまたはスロットデバイス等、他のタイプの光源強度出力制御も当技術分野では知られている。これらの様々なタイプの光源出力制御を本発明のシステム内で使用することもできる。唯一必要なことは、本発明で使用するための光源20が、入力信号に反応して内視鏡デバイス12の光ガイド22へと送られる照明光18の強度を自動的に制御することができる制御装置28を有することである（以下でより詳細に説明する）。光源20はまた、発光ダイオード（"LED"）及び／またはダイオードレーザ（例えば、高速切替え特性を備えたもの）などの半導体素子光源を含むこともできる。

20

【0036】

内視鏡デバイス12は、内視鏡デバイス12の少なくとも一部の温度を感知し、感知した温度を表す信号を生成することに関連した、少なくとも1つの、好ましくは複数の温度センサ30を含む。好ましくは、温度センサ30は内視鏡デバイス内部に配設されるが、所望であれば外面に取り付けることもできる。様々な位置で温度の読み取りを行なって、いずれかの位置で所望の最大温度を局所的に超えることがないように、内視鏡12に沿って温度センサ30を様々な位置に離間して配置することもまた、好ましい。

30

【0037】

温度センサ30によって生成された感知した温度を表す信号は光源制御装置28へ送られ、少なくとも一部は感知した温度を表す信号に基づいて、光ガイド22へと送られる照明光18の強度を変化させる。より詳細には、光源制御装置28は、感知した温度を閾値より低く維持するように、光ガイド22へと送られる照明光18の強度を変化させる。上述のように、いくつかの環境では閾値は50であるが、いくつかの他の閾値を適切とし、または適切な基準によって指示することもできる。いくつかの実施形態では、感知した温度を表す信号をイメージング制御装置に送信して、光源20とイメージングユニット及び／またはビデオ信号の切替えを同期させる。イメージング制御装置は更に、光源制御装置28からの信号を受け取って、イメージングユニットを光源20と同期して調整または切り替えることもできる。

40

【0038】

少なくとも一部は感知した温度を表す信号に基づいて照明光18の強度を変化させるために、光源制御装置28によって多くのアルゴリズムを使用することができる。温度センサ30のいずれかで感知した温度が閾値（例えば50）より高い場合、1つの単純なアルゴリズムを使用して光ガイド22に送られる照明光18の強度を低下させ、その後温度センサ30のすべてで感知した温度が別の値（例えば閾値マイナス3、すなわち47

50

)より低くなった場合、照明光18の強度を再び上げることができる。もちろん、当業者であれば簡単かつ慣例的に光源制御装置28を他の制御アルゴリズムでプログラムすることができるだろう。

【0039】

いくつかの実施形態では、イメージングユニットは光源20と同期して調整される。例えば、照明光18の強度を低下させるとき、画像の増幅及び/またはイメージングユニットの露出時間を増加させることができる。他の実施形態では、照明光18の強度を低下させると、ピクセルピニングのプロセスを使用して、互いに付近にあるいくつかのピクセルをグループ化する。ピクセルピニングによって画像の解像度は低下するが、画像の輝度は増加する。他の実施形態では、画像処理及び表示ユニットを使用して、ビデオストリーム(例えば、PAL、NTSC)のそれぞれ前半画像のみが2倍照明され表示されるように、光源20が光源制御装置28によってパルスされる。この削減により、光エネルギーは半分しか発生しない。ビデオ出力周波数は変わらないまま、解像度のみが低下する。

【0040】

いくつかの実施形態では、内視鏡システムは、感知した温度を表す信号に反応して作動するアラームを更に含む。例えば、温度センサ30によって感知された温度が閾値を超えるとき、アラームを作動させることができる。システムはまた、温度センサ30によって感知された温度が閾値を超えるとき作動する一体化された冷却システム(例えば、熱パイプのペルチェ素子)を使用することもできる。

【0041】

上記で詳述したように、熱電対など既知の温度センサには、一般に本発明による内視鏡システム10と関連した使用には不適切な、多くの短所がある。図1に加えて図2を参照すると、本発明の別の態様による温度センサ30がより詳細に説明されている。

【0042】

各センサ30は、光エネルギーを供給される近位端34、及び遠位端36を有する光ファイバ32を含む。近位端34に供給される光エネルギーは、例えば光結合器26を通して光源20によって供給することができ、またはいくつかの他の光源によって供給することができる。光ファイバ32は単一の撲り線または複数の撲り線を含むことができる。

【0043】

各センサ30はまた、光ファイバ32の遠位端36に隣接して配設された第1の端部40及び第1の端部40の反対側の第2の端部42を有する部材38も含む。部材38は温度に対して既知の関係で変化する光吸收/送信特性を備えた材料を含む。例えば部材38は、異なる温度で異なる周波数の光エネルギーを通過させる、異なる温度で異なる量の光エネルギーを通過させる等の材料から形成することができる。光学特性と温度の変化の関係が既知である限り、温度とともに変化する特定の光学特性は重要ではない。部材38を形成することができる材料の一例は、ネオジミウムを添加したボアシリケートグラスであり、この材料は通過する光エネルギーの周波数を様々な温度で変化させることができ、その特定の関係が十分に立証されている。

【0044】

反射面44が部材38の第2の端部42に隣接して配設されており、反射面44に当たる大部分、好ましくは実質的にすべての光エネルギーを反射するように作用する。反射面44はミラーまたは既知または後に開発される多くの他の反射要素/材料を含むことができる。反射面44は、部材38の第2の端部42に取り付けられた別個の要素を含むことができ、部材38の第2の端部42上に塗装、金属被覆、または他の方法で直接適用することができ、部材38の第2の端部42に隣接して配置する等とすることができます。

【0045】

光ファイバ32の近位端34に供給され(Aで示す)、光ファイバ32の遠位端36へと伝播し(Bで示す)、第1の端部40から第2の端部42へと部材38を通過する(Cで示す)光エネルギーは、反射面44によって反射され、第2の端部42から第1の端部40へと部材38を通過し(Dで示す)、光ファイバ32の遠位端36に入り(Eで示す

)、光ファイバ32の近位端34へと伝播し(Fで示す)、光ファイバ32の近位端34から出る(Gで示す)。部材38を通過する前の光エネルギーを表す矢印A、Bと、部材38を通過した後の光エネルギーを表す矢印E、F、Gの間のサイズの違いで示すように、光エネルギーは、前述したように、部材38を通過する際にその光学特性によって部材38の温度に応じて変化する。

【0046】

光ファイバ32の近位端34を出る光エネルギー(Gで示す)の特性は、光エネルギー分析装置46を使用して分析され、そのような特性を表す信号を生成する。図示された実施形態では、光エネルギー分析装置46は分光光度計を含む。従って、部材38が通過する光エネルギーの周波数を様々な温度で変化させる材料から形成されている場合は、分光光度計を使用して光ファイバ32の近位端34を出る光エネルギー(Gで示す)の周波数を測定し、その周波数を表す信号を生成することができる。

10

【0047】

温度分析装置48は、光エネルギー分析装置46によって生成された光ファイバ32の近位端34を出る光エネルギー(Gで示す)の特性を表す信号を受け取り、少なくとも一部はこの信号に基づいて、かつ少なくとも一部は部材38の光吸収/送信特性と部材38の温度との既知の関係に基づいて、部材38の温度を判断する。従って、温度分析装置48は、部材38を形成する材料の光学特性と温度の変化の既知の関係を表すデータを保存し、または他の方法でそれにアクセスする。

20

【0048】

部材38の感知した温度を表示するために、温度表示器50を任意で設けることができる(点線で示す)。複数の部材38が設けられているとき、温度表示器50は感知した温度のすべてを表示することができ、または感知した温度の一部(例えば、最高温度)のみを表示することができる。

【0049】

光エネルギー分析装置46、温度分析装置48、温度表示器50及び光源20の制御装置28は、図1では別個の要素として示されているが、それらの2つ以上を組み合わせて1つとし、またはより一体型のユニットとすることができます。

30

【0050】

従って、本発明は、安全性を強化し患者が火傷を負う可能性を低減し、内視鏡デバイスの温度が閾値温度を超えないようにし、内視鏡デバイスのいくつかの部分で感知した温度に基づいて照明光の強度を自動的に制御し、一般的な内視鏡デバイスの内部で利用可能な容積内に収まることのできる温度センサを使用し、電圧を発生せず、従って患者の安全性を損なわない温度センサを使用し、内視鏡デバイスが簡単にオートクレーブできるように機械的ワイヤ接続を必要としない温度センサを使用する、内視鏡システムを提供する。

【0051】

以上、特定の部品配置、特性等を参照して本発明を説明したが、これらはすべての可能な配置または特徴を排除するものではなく、当業者には実際に他の多くの修正及び変形が確認可能である。

40

【図面の簡単な説明】

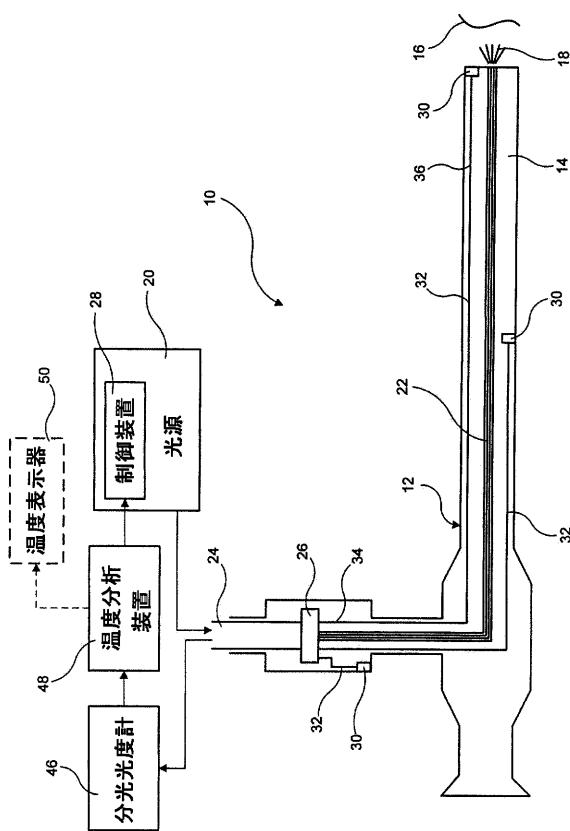
【0052】

【図1】本発明の実施形態による内視鏡システムの概略図である。

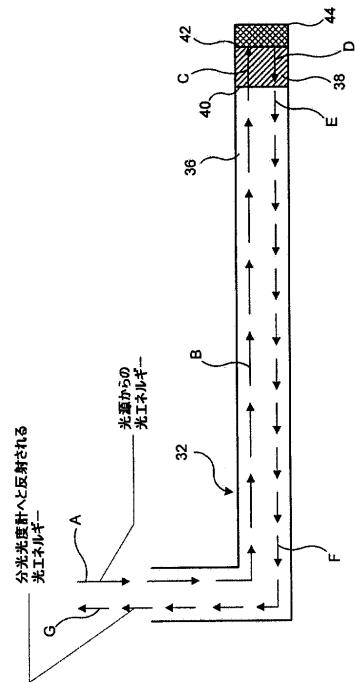
【図2】図1の内視鏡システムで使用されるセンサの実施形態の拡大概略図である。

【符号の説明】

【0053】


- 1 0 内視鏡システム
- 1 2 内視鏡デバイス
- 1 4 遠位端
- 1 6 組織
- 1 8 照明光

50


2 0 高輝度光源
 2 2 光ガイド
 2 4 光ケーブル
 2 6 光結合器
 2 8 光源制御装置
 3 0 温度センサ
 3 2 光ファイバ
 3 4 近位端
 3 6 遠位端
 3 8 部材
 4 0 第1の端部
 4 2 第2の端部
 4 4 反射面
 4 6 光エネルギー分析装置
 4 8 温度分析装置
 5 0 温度表示器

10

【図1】

【図2】

フロントページの続き

(72)発明者 ダナ・ジェイ・ランドリー

アメリカ合衆国・マサチューセッツ・01566・スターブリッジ・ベントウッド・ドライブ・3
0

F ターム(参考) 2H040 BA10 CA05 CA10

4C061 DD01 DD03 DD06 GG01 HH51 JJ11 JJ17 NN01 NN05 PP12
PP15 RR02 RR03 RR24 SS04 SS10

【外國語明細書】

ENDOSCOPIC DEVICE WITH TEMPERATURE BASED LIGHT SOURCE CONTROL

Field of the Invention

[0001] This present invention relates generally to an endoscopic system including a light source for supplying illumination light to an endoscopic device, and more particularly to such an endoscopic system in which the light source is automatically controlled based upon temperature related feedback.

Background of the Invention

[0002] The imaging of body surfaces through endoscopes is well known within the medical and veterinary fields. Typically, this involves inserting an endoscope into a body cavity and directing an intense light source output through the endoscope to illuminate body tissue. Light reflected by the body tissue then is guided along an optical path either to an eyepiece for direct viewing of the tissue (in the case of a conventional endoscope) or to an image sensor to generate a video image of the tissue (in the case of an electronic endoscope).

[0003] The illumination light emanating from the light source is propagated to the distal part of the insertion unit portion of the endoscope over a light guide or the like. The illumination light is irradiated to an object region, such as a lesion or other body tissue, via an illumination optical system through the distal part.

[0004] In the case of conventional endoscopes, an image of the object region is formed by an objective lens located in the distal part of the insertion unit. An optical image is transmitted to an eyepiece unit by means of an optical transmission means. An eyepiece optical system then enables the optical image to be viewed. The optical transmission means varies depending on the usage or purpose of use. For example, fiber bundles are typically used in conjunction with flexible endoscopes, while relay lens systems are typically used in conjunction with rigid endoscopes.

[0005] In electronic endoscopes, which include a solid-state imaging device, such as a CCD, in the distal part of an insertion unit, an optical image is formed on the image formation surface of the CCD via an objective lens. The CCD photoelectrically converts the optical images so as to provide image information in the form of electrical signals. The image information is subjected to various kinds of image processing, and thus a desired image of an object region is displayed on a monitor or the like.

[0006] A disadvantage of traditional endoscopic devices, whether conventional or electronic, is that they can become hot during use due to the high amount of light energy passing therethrough required to illuminate the area or cavity of observation. This is especially true in the case of metal bodied, rigid endoscopes, but excessive heating can also occur in connection with semi-rigid and flexible endoscopic devices. It is desired that the temperature of any exposed part of endoscopic devices not exceed 50 °C, or that allowed by applicable standard.

[0007] It is well-understood that the temperature of endoscopic devices can be altered by adjusting the intensity of light passing therethrough. Traditionally, this was accomplished by manually adjusting a dial or the like on the light source controller to either increase or decrease the intensity of the illumination light. This technique, however, is problematic in that it distracts the operator's attention away from the medical procedure being performed. Moreover, it is difficult to know precisely how much the intensity of the light should be varied in order to ensure that the threshold temperature is not exceeded, while at the same time ensuring that the intensity of the illumination light is maintained as high as is safely possible to enhance viewing. An automated control solution based upon sensed temperature would be far more desirable.

[0008] While there are known prior art systems which provide some level of automated control over the light source, such as those that turn off the light source after a predetermined duration of time (U.S. Patent No. 4,963,960), those that turn off the light source when the light source is not directed at a surface (U.S. Patent No. 6,511,422), and those that set the light intensity based upon an image signal produced by an imaging unit, such as a CCD, in order to optimize the captured image (U.S. Patent Nos. 5,131,381 and 5,957,834), the applicant is not aware of any systems that control the intensity of the illumination light based upon a sensed temperature of some portion of the endoscopic device.

[0009] One of the reasons for this may be that traditional types of temperature sensors are not appropriate for use in measuring temperature along an endoscopic device. For example, while the application of thermocouples for measuring

temperature is well known, such devices could not be effectively used in connection with measuring temperature along an endoscope for a number of reasons. More specifically, thermocouples are typically relatively large with respect to the available volume within the endoscopic device, thermocouples are electrical devices that create voltage, and therefore may compromise patient safety, and thermocouples require a mechanical wire connection, which may be problematic since endoscopic devices typically must be autoclaved.

[0010] What is desired, therefore, is an endoscopic system which provides enhanced safety and reduces the likelihood of patient burns, which ensures that the temperature of an endoscopic device does not exceed a threshold temperature, which automatically controls the intensity of an illumination light based upon a sensed temperature of some portion of the endoscopic device, which employs temperature sensors that can fit within the available volume within typical endoscopic devices, which employs temperature sensors that do not create voltage, and therefore do not compromise patient safety, and which employs temperature sensors that do not require a mechanical wire connection, so that the endoscopic device may be readily autoclaved.

Summary of the Invention

[0011] Accordingly, it is an object of the present invention to provide an endoscopic system which provides enhanced safety and reduces the likelihood of patient burns.

[0012] Another object of the present invention is to provide an endoscopic system having the above characteristics and which ensures that the temperature of an endoscopic device does not exceed a threshold temperature.

[0013] A further object of the present invention is to provide an endoscopic system having the above characteristics and which automatically controls the intensity of an illumination light based upon a sensed temperature of some portion of the endoscopic device.

[0014] Still another object of the present invention is to provide an endoscopic system having the above characteristics and which employs temperature sensors that can fit within the available volume within typical endoscopic devices.

[0015] Yet a further object of the present invention is to provide an endoscopic system having the above characteristics and which employs temperature sensors that do not create voltage, and therefore do not compromise patient safety.

[0016] Still yet a further object of the present invention is to provide an endoscopic system having the above characteristics and which employs temperature sensors that do not require a mechanical wire connection, so that the endoscopic device may be readily autoclaved.

[0017] These and other objects are achieved in accordance with one embodiment of the present invention by provision of an endoscopic system having an endoscopic device having a light guide passing therethrough to a distal end thereof, a light source

in communication with the endoscopic device, the light source transmitting illumination light to the light guide of the endoscopic device, a light source controller in communication with the light source, the light source controller controlling an intensity of the illumination light transmitted to the light guide of the endoscopic device, and at least one temperature sensor, at least a portion of which is carried by the endoscopic device. The at least one temperature sensor senses a temperature of at least a portion of the endoscopic device and produces a signal indicative of the sensed temperature, the signal being transmitted to the light source controller. The light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon the signal indicative of the sensed temperature.

[0018] In some embodiments, the light source controller varies the intensity of the illumination light transmitted to the light guide so as to maintain the sensed temperature below a threshold value. In certain of these embodiments, the light source controller reduces the intensity of the illumination light transmitted to the light guide if the sensed temperature is above the threshold value. In some embodiments, the endoscopic device is at least one of the following: a rigid endoscope, a semi-rigid endoscope and a flexible endoscope. In some embodiments, the at least one temperature sensor takes the form of a plurality of temperature sensors disposed along the endoscopic device.

[0019] In some embodiments, the at least one temperature sensor includes an optical fiber having a proximal end and a distal end, a member having a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member being formed from a material with optical

absorption/transmission properties that vary in a known relationship with respect to a temperature of the member, and a reflective surface disposed adjacent the second end of the member. In these embodiments, the light source supplies light energy to the proximal end of the optical fiber, and the light energy propagates to the distal end of the optical fiber, passes through the member from the first end to the second end thereof, is reflected by the reflective surface, passes through the member from the second end to the first end thereof, enters the distal end of the optical fiber, propagates to the proximal end of the optical fiber, and exits the proximal end of the optical fiber. The light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member.

[0020] In accordance with another embodiment of the present invention, an endoscopic system includes an endoscopic device having at least one temperature sensor for sensing a temperature of at least a portion of the endoscopic device. The at least one temperature sensor includes an optical fiber having a proximal end and a distal end, a member having a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member being formed from a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member, and a reflective surface disposed adjacent the second end of the member. Light energy is supplied to the proximal end of the optical fiber, propagates to the distal end of the optical fiber, passes through the member from the first end to the second end thereof, is reflected by the reflective surface, passes through the member from the second end to the first end thereof, enters the distal end of the optical fiber, propagates to the proximal end of

the optical fiber, and exits the proximal end of the optical fiber. The light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member.

[0021] In some embodiments, the at least one temperature sensor further includes a light energy analyzer for analyzing the properties of the light energy exiting the proximal end of the optical fiber, and for generating a signal indicative thereof. In certain of these embodiments, the light energy analyzer is a spectrophotometer. In certain embodiments, the at least one temperature sensor further includes a temperature analyzer for determining the temperature of the member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of the optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of the member and the temperature of the member. In certain of these embodiments, the at least one temperature sensor further includes a temperature display for displaying the temperature of the member.

[0022] In some embodiments, the endoscopic system further includes a light source in communication with the endoscopic device, the light source transmitting illumination light to a light guide of the endoscopic device, and a light source controller in communication with the light source, the light source controller controlling an intensity of the illumination light transmitted to the light guide of the endoscopic device. In these embodiments, the light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon a temperature sensed by the at least one temperature sensor.

[0023] In accordance with a further embodiment of the present invention, an endoscopic system includes an endoscopic device having a light guide passing therethrough to a distal end thereof, a light source in communication with the endoscopic device, the light source transmitting illumination light to the light guide of the endoscopic device, a light source controller in communication with the light source, the light source controller controlling an intensity of the illumination light transmitted to the light guide of the endoscopic device, and at least one temperature sensor. The temperature sensor includes an optical fiber having a proximal end and a distal end, a member having a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member being formed from a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member, and a reflective surface disposed adjacent the second end of the member. Light energy is supplied to the proximal end of the optical fiber, propagates to the distal end of the optical fiber, passes through the member from the first end to the second end thereof, is reflected by the reflective surface, passes through the member from the second end to the first end thereof, enters the distal end of the optical fiber, propagates to the proximal end of the optical fiber, and exits the proximal end of the optical fiber. The light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member. The endoscopic system further includes a light energy analyzer for analyzing the properties of the light energy exiting the proximal end of the optical fiber, and for generating a signal indicative thereof, and a temperature analyzer for determining the temperature of the member based at least in part upon the signal indicative of the properties of the light energy

exiting the proximal end of the optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of the member and the temperature of the member. The temperature analyzer generates and transmits a signal indicative of the determined temperature of the member to the light source controller, and the light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon the signal indicative of the determined temperature of the member.

[0024] In accordance with still another embodiment of the present invention, a method of controlling an endoscopic system includes the steps of: (i) providing an endoscopic device having a light guide passing therethrough to a distal end thereof; (ii) transmitting illumination light to the light guide of the endoscopic device using a light source in communication with the endoscopic device; (iii) sensing a temperature of at least a portion of the endoscopic device and producing a signal indicative of the sensed temperature using at least one temperature sensor, at least a portion of which is carried by the endoscopic device; (iv) transmitting the signal indicative of the sensed temperature to a light source controller; and (v) varying the intensity of the illumination light transmitted to the light guide automatically, using the light source controller, based at least in part upon the signal indicative of the sensed temperature.

[0025] In some embodiments, the varying step (v) involves the step of varying the intensity of the illumination light transmitted to the light guide automatically, using the light source controller, based at least in part upon the signal indicative of the sensed temperature so as to maintain the sensed temperature below a threshold value. In certain of these embodiments, the varying step (v) involves the step of reducing the

intensity of the illumination light transmitted to the light guide automatically, using the light source controller, if the signal indicative of the sensed temperature indicates that the sensed temperature is above the threshold value. In some embodiments, the at least one temperature sensor takes the form of a plurality of temperature sensors disposed along the endoscopic device.

[0026] In some embodiments, the sensing step (iii) involves the steps of: (a) providing an optical fiber having a proximal end and a distal end; (b) disposing a member with a first end thereof adjacent the distal end of the optical fiber and a second end opposite the first end, the member formed from a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member; (c) disposing a reflective surface adjacent the second end of the member; and (d) supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and causing the light energy to exit the proximal end of the optical fiber. In these embodiments, the light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member.

[0027] In accordance with still a further embodiment of the present invention, a method for sensing a temperature of at least a portion of an endoscopic device

includes the steps of: (i) providing an optical fiber having a proximal end and a distal end; (ii) disposing a member with a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member formed from a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member; (iii) disposing a reflective surface adjacent the second end of the member; and (iv) supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and causing the light energy to exit the proximal end of the optical fiber. The light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member.

[0028] In some embodiments, the method for sensing a temperature of at least a portion of an endoscopic device further includes the step of: (v) analyzing the properties of the light energy exiting the proximal end of the optical fiber, and generating a signal indicative thereof. In certain of these embodiments, the analyzing step (v) is performed using a spectrophotometer. In certain embodiments, the method for sensing a temperature of at least a portion of an endoscopic device further includes the step of: (vi) determining the temperature of the member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of the optical fiber, and based at least in part upon the known relationship between the

optical absorption/transmission properties of the member and the temperature of the member. In certain of these embodiments, the method for sensing a temperature of at least a portion of an endoscopic device further includes the step of: (vii) displaying the temperature of the member.

[0029] In some embodiments, the method for sensing a temperature of at least a portion of an endoscopic device further includes the step of: (v) using the sensed temperature to vary an intensity of illumination light supplied to the endoscopic device.

[0030] In accordance with yet another embodiment of the present invention, a method of controlling an endoscopic system includes the steps of: (i) providing an endoscopic device having a light guide passing therethrough to a distal end thereof; (ii) transmitting illumination light to the light guide of the endoscopic device using a light source in communication with the endoscopic device; (iii) providing an optical fiber having a proximal end and a distal end; (iv) disposing a member with a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member formed from a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member; (v) disposing a reflective surface adjacent the second end of the member; (vi) supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and

causing the light energy to exit the proximal end of the optical fiber, wherein the light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member; (vii) analyzing the properties of the light energy exiting the proximal end of the optical fiber, and generating a signal indicative thereof; (viii) determining the temperature of the member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of the optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of the member and the temperature of the member; and (ix) varying the intensity of the illumination light transmitted to the light guide automatically, using a light source controller, based at least in part upon the determined temperature of the member.

[0031] The invention and its particular features and advantages will become more apparent from the following detailed description considered with reference to the accompanying drawings.

Brief Description of the Drawings

[0032] **Figure 1** is a schematic view of an endoscopic system in accordance with an embodiment of the present invention; and

[0033] **Figure 2** is an enlarged, schematic view of an embodiment of a sensor employed by the endoscopic system of Figure 1.

Detailed Description of an Embodiment of the Invention

[0034] Referring first to Figure 1, an endoscopic system 10 in accordance with an exemplary embodiment of the present invention is shown. Endoscopic system 10 includes an endoscopic device 12, which may comprise a conventional endoscope with an eyepiece and an optical transmission means, such as a lens system or a fiber optic system, an electronic endoscope having a distally disposed imaging unit or camera head mounted at the proximal end to produce video images, or some other type of image viewing system. In some embodiments, the imaging unit includes an image sensor (e.g., CCD, CMOS). The endoscopic system 10 may further include an imaging controller in communication with the imaging unit for controlling and varying the image amplification, gain, and/or exposure time of the imaging unit. However, because numerous types of image capture/viewing systems are well known in the art, and because the present invention is concerned with the illumination system, rather than the image capture/viewing system, the numerous image capture/viewing systems in connection with which the present invention may be used are not described herein and the elements thereof are not shown in the Figures for the sake of clarity. Moreover, it should be noted that the present invention may be used in connection with substantially any type of known or later developed endoscopic devices, such as, but not limited to, rigid endoscopes, semi-rigid endoscopes, and flexible endoscopes.

[0035] Endoscopic device 12 includes a distal end 14 which during use is typically inserted into an orifice or body cavity and is directed at tissue 16 to inspect the tissue 16. As is known, there is typically very little light within the orifice or body

cavity, such that illumination light 18 is required to be provided in order to illuminate tissue 16 for viewing. Typically, this illumination light 18 is provided by a high intensity light source 20 and passed to the distal end 14 of endoscopic device 12 through a light guide 22 that passes through the endoscopic device 12 to the distal end 14.

[0036] The light guide 22 may take the form of, for example, a fiber optic bundle coupled to a light cable 24 supplied light energy from light source 20 by way of an optical coupler 26 or the like. Of course, light guide 22 may take other forms.

[0037] Light source 20 may comprise any of numerous types of known or yet to be developed light sources. One type of known light source is a high intensity light source that utilizes an incandescent bulb (such as a xenon bulb, or other type), driven by an amplifier, which in turn is controlled by output control circuitry, to set the light intensity level of the light source. Of course, other types of light source intensity output control are known within the art, such as mechanical diaphragm or iris, liquid crystal shutter, rotary reed or slot devices, and the like. These various types of light source output controls may be utilized within the system of the present invention. All that is required is that the light source 20 for use in accordance with the present invention have a controller 28 that is capable of automatically controlling an intensity of illumination light 18 transmitted to light guide 22 of endoscopic device 12 in response to input signals (as described in more detail below). The light source 20 may also comprise semiconductor element light sources such as light emitting diodes ("LED") and/or diode-lasers (e.g., with fast switching characteristics).

[0038] Endoscopic device 12 includes at least one, but preferably a plurality of, temperature sensors 30 associated therewith sensing a temperature of at least a portion of endoscopic device 12 and producing a signal indicative of the sensed temperature. Preferably, temperature sensors 30 are disposed within endoscopic device, but if desired, they may be carried on an external surface thereof. It is also preferable that temperature sensors 30 be spaced apart at various locations along endoscopic device 12 so as to provide temperature readings at various locations thereof to ensure that the desired maximum temperature is not exceeded locally at any location thereof.

[0039] The signals indicative of the sensed temperature produced by temperature sensors 30 are transmitted to light source controller 28, which varies the intensity of illumination light 18 transmitted to light guide 22 based at least in part upon the signal indicative of the sensed temperature. More specifically, light source controller 28 varies the intensity of illumination light 18 transmitted to light guide 22 so as to maintain the sensed temperature below a threshold value. As discussed above, the threshold value is in some circumstances 50 °C, but some other threshold value may be appropriate or dictated by appropriate standards. In some embodiments, the signals indicative of the sensed temperature are also transmitted to the imaging controller to synchronize switching of the light source 20 with the imaging unit and/or video signal. The imaging controller may further receive signals from the light source controller 28 to adjust or switch the imaging unit in synchrony with the light source 20.

[0040] Any of numerous algorithms may be employed by light source controller 28 to vary the intensity of illumination light 18 based at least in part upon the signal indicative of the sensed temperature. One simple algorithm employed may be to reduce the intensity of illumination light 18 transmitted to light guide 22 if the temperature sensed by any of temperature sensors 30 is above the threshold value (e.g., 50 °C), and then to increase the intensity of illumination light 18 again if the temperature sensed by all of temperature sensors 30 falls below another value (e.g., the threshold value minus 3 °C, or 47 °C). Of course, one skilled in the art could easily and routinely program light source controller 28 with other control algorithms.

[0041] In some embodiments, the imaging unit is adjusted in synchrony with the light source 20. For example, the image amplification and/or exposure time of the imaging unit may be increased as the intensity of the illumination light 18 is decreased. In other embodiments, the process of pixel binning is used to group several pixels in proximity to one another as the intensity of the illumination light 18 is decreased. Pixel binning decreases image resolution but increases image brightness. In further embodiments, the light source 20 is pulsed by the light source controller 28 such that only each first half image of the video stream (e.g., PAL, NTSC) is illuminated and displayed twice by means of an image processing and display unit. This reduction generates only half of the light energy. The video output frequency remains the same and only the resolution is reduced.

[0042] In some embodiments, the endoscopic system further includes an alarm that is activated in response to signals indicative of the sensed temperature. For example, the alarm may be activated when the temperature sensed by any of temperature sensors 30 is above the threshold value. The system may also include an integrated cooling system (e.g., heat pipe, Peltier-element) that is activated when the temperature sensed by any of temperature sensors 30 is above the threshold value.

[0043] As discussed above in greater detail, known temperature sensors, such as thermocouples, suffer from a number of disadvantages which typically make them unsuitable for use in connection with endoscopic system 10 in accordance with the present invention. Referring now to Figure 2 in addition to Figure 1, temperature sensors 30 in accordance with another aspect of the present invention will be discussed in more detail.

[0044] Each sensor 30 includes an optical fiber 32 having a proximal end 34, which is supplied with light energy, and a distal end 36. The light energy supplied to proximal end 34 may be supplied by light source 20, through, for example, optical coupler 26, or may be supplied by some other source. It should be understood that optical fiber 32 may comprise a single strand or a plurality of strands.

[0045] Each sensor 30 also includes a member 38 having a first end 40 disposed adjacent distal end 36 of optical fiber 32 and a second end 42 opposite the first end

40. Member 38 comprises a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature thereof. For example, member 38 may be formed from a material that allows different frequencies of light energy to pass therethrough at different temperatures thereof, different amounts of light energy to pass therethrough at different temperatures thereof, etc. The particular optical properties that vary with temperature are not important, so long as the relationship between the variance of the optical properties and temperature is known. One example of a material from which member 38 may be formed is borosilicate glass doped with neodymium, which material allows varying frequencies of light energy to pass therethrough at varying temperatures, the particular relationship therebetween having been well-documented.

[0046] A reflective surface 44 is disposed adjacent second end 42 of member 38, which acts to reflect a significant portion, and preferably substantially all, light energy striking reflective surface 44. Reflective surface 44 may comprise a mirror or any of numerous other reflective elements/materials known or later developed. Reflective surface 44 may comprise a separate element attached to second end 42 of member 38, may be painted, metallized, or otherwise applied directly onto second end 42 of member 38, may be positioned adjacent second end 42 of member 38, etc.

[0047] The light energy supplied to the proximal end 34 of optical fiber 32 (indicated by A), propagates to distal end 36 of optical fiber 32 (indicated by B), passes through member 38 from first end 40 to second end 42 thereof (indicated by C), is reflected by reflective surface 44, passes through member 38 from second

end 42 to first end 40 thereof (indicated by D), enters distal end 36 of optical fiber 32 (indicated by E), propagates to proximal end 34 of optical fiber 32 (indicated by F), and exits proximal end 34 of optical fiber 32 (indicated by G). As indicated by the difference in size between arrows A, B representing the light energy before passing through member 38 and arrows E, F, G representing the light energy after passing through member 38, the light energy is altered by the optical properties of member 38 as it passes therethrough, and in a manner that is dependent upon the temperature of member 38, as discussed above.

[0048] The properties of the light energy exiting proximal end 34 of optical fiber 32 (indicated by G) is analyzed using a light energy analyzer 46, which generates a signal indicative of such properties. In the illustrated embodiment, light energy analyzer 46 comprises a spectrophotometer. Thus, in the case where member 38 is formed from a material which allows varying frequencies of light energy to pass therethrough at varying temperatures, the spectrophotometer could be used to measure the frequencies of the light energy exiting proximal end 34 of optical fiber 32 (indicated by G) and to generate a signal indicative of these frequencies.

[0049] A temperature analyzer 48 receives the signal indicative of the properties of the light energy exiting proximal end 34 of optical fiber 32 (indicated by G) generated by light energy analyzer 46, and determines the temperature of member 38 based at least in part upon the this signal, and based at least in part upon the known relationship between the optical absorption/transmission properties of member 38 and the temperature of member 38. Thus, temperature analyzer 48 has stored

thereon, or otherwise has access to, data indicative of the known relationship between the variance of the optical properties and temperature for the material from which member 38 is made.

[0050] A temperature display 50 may optionally (indicated by dashed lines) be provided for displaying the sensed temperature of member 38. When multiple members 38 are provided, temperature display 50 may display all of the sensed temperatures, or may display only some of the sensed temperatures (e.g., the highest temperature).

[0051] Although light energy analyzer 46, temperature analyzer 48, temperature display 50 and controller 28 of light source 20 are shown as separate elements in Figure 1, any two or more of them may be combined into one or more integrated units.

[0052] The present invention, therefore, provides an endoscopic system which provides enhanced safety and reduces the likelihood of patient burns, which ensures that the temperature of an endoscopic device does not exceed a threshold temperature, which automatically controls the intensity of an illumination light based upon a sensed temperature of some portion of the endoscopic device, which employs temperature sensors that can fit within the available volume within typical endoscopic devices, which employs temperature sensors that do not create voltage, and therefore do not compromise patient safety, and which employs temperature

sensors that do not require a mechanical wire connection, so that the endoscopic device may be readily autoclaved.

[0053] Although the invention has been described with reference to a particular arrangement of parts, features and the like, these are not intended to exhaust all possible arrangements or features, and indeed many other modifications and variations will be ascertainable to those of skill in the art.

1. An endoscopic system comprising:

an endoscopic device having a light guide passing therethrough to a distal end thereof;

a light source in communication with said endoscopic device, said light source transmitting illumination light to the light guide of said endoscopic device;

a light source controller in communication with said light source, said light source controller controlling an intensity of the illumination light transmitted to the light guide of said endoscopic device;

at least one temperature sensor, at least a portion of which is carried by said endoscopic device, said at least one temperature sensor sensing a temperature of at least a portion of said endoscopic device and producing a signal indicative of the sensed temperature, the signal being transmitted to said light source controller; and

wherein said light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon the signal indicative of the sensed temperature.

2. The endoscopic system of Claim 1 wherein said light source controller varies the intensity of the illumination light transmitted to the light guide so as to maintain the sensed temperature below a threshold value.

3. The endoscopic system of Claim 2 wherein said light source controller reduces the intensity of the illumination light transmitted to the light guide if the sensed temperature is above the threshold value.

4. The endoscopic system of Claim 1 wherein said endoscopic device comprises at least one of the following: a rigid endoscope, a semi-rigid endoscope and a flexible endoscope.

5. The endoscopic system of Claim 1 wherein said at least one temperature sensor comprises a plurality of temperature sensors disposed along said endoscopic device.

6. The endoscopic system of Claim 1 wherein said at least one temperature sensor comprises:

an optical fiber having a proximal end and a distal end;

a member having a first end disposed adjacent the distal end of said optical fiber and a second end opposite the first end, said member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of said member;

a reflective surface disposed adjacent the second end of said member;

wherein said light source supplies light energy to the proximal end of said optical fiber, and wherein the light energy propagates to the distal end of said optical fiber, passes through said member from the first end to the second end thereof, is reflected by said reflective surface, passes through said member from the second end

to the first end thereof, enters the distal end of said optical fiber, propagates to the proximal end of said optical fiber, and exits the proximal end of said optical fiber; and

wherein the light energy is altered by the optical properties of said member as it passes through said member, and in a manner that is dependent upon the temperature of said member.

7. The endoscopic system according to claim 1, further comprising:

an imaging unit comprising an image sensor;

an imaging controller for varying an image amplification and an exposure time of the imaging unit.

8. The endoscopic system according to claim 7, wherein said imaging controller varies at least one of the image amplification and the exposure time based at least in part upon the signal indicative of the sensed temperature.

9. The endoscopic system according to claim 7, wherein the imaging controller varies at least one of the image amplification and exposure time in synchrony with said light source controller varying the intensity of the illumination light.

10. The endoscopic system according to claim 1, wherein the light source includes at least one of a light emitting diode and a diode-laser.

11. The endoscopic system according to claim 1, further comprising:

a cooling system, wherein said cooling system is activated based at least in part upon the signal indicative of the sensed temperature.

12. The endoscopic system according to claim 1, further comprising:

an alarm, wherein said alarm is activated based at least in part upon the signal indicative of the sensed temperature.

13. An endoscopic system comprising an endoscopic device having at least one temperature sensor for sensing a temperature of at least a portion of the endoscopic device, the at least one temperature sensor comprising:

an optical fiber having a proximal end and a distal end;

a member having a first end disposed adjacent the distal end of said optical fiber and a second end opposite the first end, said member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of said member;

a reflective surface disposed adjacent the second end of said member;

wherein light energy is supplied to the proximal end of said optical fiber, propagates to the distal end of said optical fiber, passes through said member from the first end to the second end thereof, is reflected by said reflective surface, passes through said member from the second end to the first end thereof, enters the distal end of said optical fiber, propagates to the proximal end of said optical fiber, and exits the proximal end of said optical fiber; and

wherein the light energy is altered by the optical properties of said member as it passes through said member, and in a manner that is dependent upon the temperature of said member.

14. The endoscopic system of Claim 13, wherein the at least one temperature sensor further comprises a light energy analyzer for analyzing the properties of the light energy exiting the proximal end of said optical fiber, and for generating a signal indicative thereof.

15. The endoscopic system of Claim 14, wherein the light energy analyzer comprises a spectrophotometer.

16. The endoscopic system of Claim 14, wherein the at least one temperature sensor further comprises a temperature analyzer for determining the temperature of said member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of said optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of said member and the temperature of said member.

17. The endoscopic system of Claim 16, wherein the at least one temperature sensor further comprises a temperature display for displaying the temperature of said member.

18. The endoscopic system of Claim 13 further comprising:

- a light source in communication with said endoscopic device, said light source transmitting illumination light to a light guide of said endoscopic device;
- a light source controller in communication with said light source, said light source controller controlling an intensity of the illumination light transmitted to the light guide of said endoscopic device; and

wherein said light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon a temperature sensed by the at least one temperature sensor.

19. An endoscopic system comprising:

an endoscopic device having a light guide passing therethrough to a distal end thereof;

a light source in communication with said endoscopic device, said light source transmitting illumination light to the light guide of said endoscopic device;

a light source controller in communication with said light source, said light source controller controlling an intensity of the illumination light transmitted to the light guide of said endoscopic device;

at least one temperature sensor comprising:

an optical fiber having a proximal end and a distal end;

a member having a first end disposed adjacent the distal end of said optical fiber and a second end opposite the first end, said member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of said member;

a reflective surface disposed adjacent the second end of said member;

wherein light energy is supplied to the proximal end of said optical fiber, propagates to the distal end of said optical fiber, passes through said member from the first end to the second end thereof, is reflected by said reflective surface, passes through said member from the second end to the first end thereof, enters the distal end of said optical fiber, propagates to the proximal end of said optical fiber, and exits the proximal end of said optical fiber;

wherein the light energy is altered by the optical properties of said member as it passes through said member, and in a manner that is dependent upon the temperature of said member;

a light energy analyzer for analyzing the properties of the light energy exiting the proximal end of said optical fiber, and for generating a signal indicative thereof; and

a temperature analyzer for determining the temperature of said member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of said optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of said member and the temperature of said member, said temperature analyzer generating and transmitting a signal indicative of the determined temperature of said member to said light source controller; and wherein said light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon the signal indicative of the determined temperature of said member.

20. A method of controlling an endoscopic system comprising the steps of:

providing an endoscopic device having a light guide passing therethrough to a distal end thereof;

transmitting illumination light to the light guide of the endoscopic device using a light source in communication with the endoscopic device;

sensing a temperature of at least a portion of the endoscopic device and producing a signal indicative of the sensed temperature using at least one temperature sensor, at least a portion of which is carried by the endoscopic device;

transmitting the signal indicative of the sensed temperature to a light source controller; and

varying the intensity of the illumination light transmitted to the light guide automatically, using the light source controller, based at least in part upon the signal indicative of the sensed temperature.

21. The method of controlling an endoscopic system of Claim 20 wherein said varying step comprises the step of varying the intensity of the illumination light transmitted to the light guide automatically, using the light source controller, based at least in part upon the signal indicative of the sensed temperature so as to maintain the sensed temperature below a threshold value.

22. The method of controlling an endoscopic system of Claim 21 wherein said varying step comprises the step of reducing the intensity of the illumination light transmitted to the light guide automatically, using the light source controller, if the signal indicative of the sensed temperature indicates that the sensed temperature is above the threshold value.

23. The method according to claim 22, further comprising the step of: grouping two or more pixels of a received image via pixel binning to increase brightness of the received image when the intensity of the illumination light is reduced.

24. The method of controlling an endoscopic system of Claim 20 wherein the at least one temperature sensor comprises a plurality of temperature sensors disposed along the endoscopic device.

25. The method of controlling an endoscopic system of Claim 20 wherein said sensing step comprises the steps of:

providing an optical fiber having a proximal end and a distal end;

disposing a member with a first end thereof adjacent the distal end of the optical fiber and a second end opposite the first end, the member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member;

disposing a reflective surface adjacent the second end of the member;

supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and causing the light energy to exit the proximal end of the optical fiber; and

wherein the light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member.

26. The method according to claim 20:

wherein the endoscopic device includes an imaging unit; and

wherein the method further comprises the step of varying at least one of an image amplification and an exposure time of an imaging unit based at least in part upon the signal indicative of the sensed temperature.

27. The method according to claim 20:

wherein the endoscopic device includes an imaging unit; and

wherein the method further comprises the step of varying at least one of an image amplification and an exposure time of an imaging unit in synchrony with the varying of the intensity of the illumination light.

28. A method for sensing a temperature of at least a portion of an endoscopic device comprising the steps of:

providing an optical fiber having a proximal end and a distal end;

disposing a member with a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member;

disposing a reflective surface adjacent the second end of the member;

supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and causing the light energy to exit the proximal end of the optical fiber; and

wherein the light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member.

29. The method for sensing a temperature of at least a portion of an endoscopic device of Claim 28, further comprising the step of analyzing the properties of the light energy exiting the proximal end of the optical fiber, and generating a signal indicative thereof.

30. The method for sensing a temperature of at least a portion of an endoscopic device of Claim 29, wherein said analyzing step is performed using a spectrophotometer.

31. The method for sensing a temperature of at least a portion of an endoscopic device of Claim 29, further comprising the step of determining the temperature of the member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of the optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of the member and the temperature of the member.

32. The method for sensing a temperature of at least a portion of an endoscopic device of Claim 31, further comprising the step of displaying the temperature of the member.

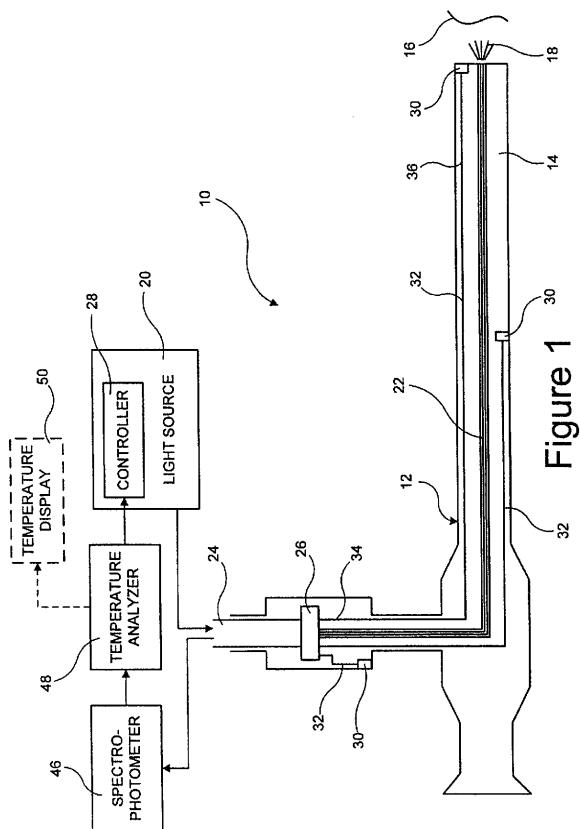
33. The method for sensing a temperature of at least a portion of an endoscopic device of Claim 28 further comprising the step of using the sensed temperature to vary an intensity of illumination light supplied to the endoscopic device.

34. A method of controlling an endoscopic system comprising the steps of:

- providing an endoscopic device having a light guide passing therethrough to a distal end thereof;
- transmitting illumination light to the light guide of the endoscopic device using a light source in communication with the endoscopic device;
- providing an optical fiber having a proximal end and a distal end;
- disposing a member with a first end disposed adjacent the distal end of the optical fiber and a second end opposite the first end, the member comprising a material with optical absorption/transmission properties that vary in a known relationship with respect to a temperature of the member;
- disposing a reflective surface adjacent the second end of the member;
- supplying light energy to the proximal end of the optical fiber, propagating the light energy to the distal end of the optical fiber, passing the light energy through the member from the first end to the second end thereof, reflecting the light energy with the reflective surface, passing the light energy through the member from the second end to the first end thereof, causing the light energy to enter the distal end of the optical fiber, propagating the light energy to the proximal end of the optical fiber, and causing the light energy to exit the proximal end of the optical fiber;
- wherein the light energy is altered by the optical properties of the member as it passes through the member, and in a manner that is dependent upon the temperature of the member;
- analyzing the properties of the light energy exiting the proximal end of the optical fiber, and generating a signal indicative thereof;
- determining the temperature of the member based at least in part upon the signal indicative of the properties of the light energy exiting the proximal end of the

optical fiber, and based at least in part upon the known relationship between the optical absorption/transmission properties of the member and the temperature of the member; and

varying the intensity of the illumination light transmitted to the light guide automatically, using a light source controller, based at least in part upon the determined temperature of the member.


1 Abstract

Abstract of the Disclosure

An endoscopic system includes an endoscopic device having a light guide passing therethrough to a distal end thereof, a light source in communication with the endoscopic device, the light source transmitting illumination light to the light guide, a light source controller in communication with the light source, the light source controller controlling an intensity of the illumination light transmitted to the light guide, and at least one temperature sensor, at least a portion of which is carried by the endoscopic device. The temperature sensor senses a temperature of at least a portion of the endoscopic device and produces a signal indicative of the sensed temperature, the signal being transmitted to the light source controller. The light source controller varies the intensity of the illumination light transmitted to the light guide based at least in part upon the signal indicative of the sensed temperature.

2 Representative Drawing

Fig. 2

Figure

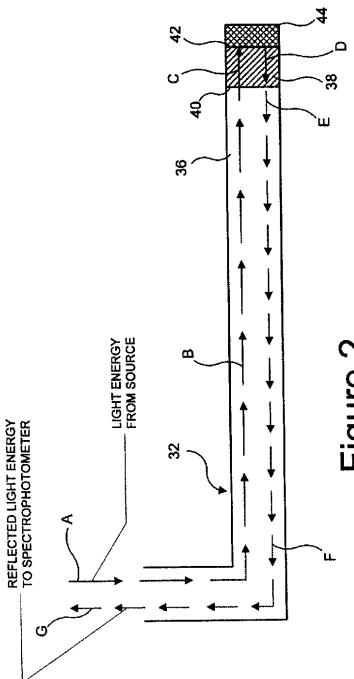
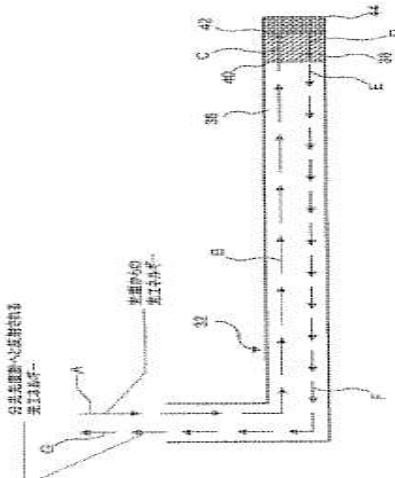



Figure 2

专利名称(译)	基于温度的光源控制的内窥镜装置		
公开(公告)号	JP2008080112A	公开(公告)日	2008-04-10
申请号	JP20072222825	申请日	2007-08-29
[标]申请(专利权)人(译)	卡尔斯巴德东通最终愿景公司		
申请(专利权)人(译)	卡尔Sutotsu端视公司		
[标]发明人	ダナ・ジェイ・ランドリー		
发明人	ダナ・ジェイ・ランドリー		
IPC分类号	A61B1/06 A61B1/00 G02B23/26		
CPC分类号	A61B1/07 A61B1/00055 A61B1/0017 A61B1/0638 A61B1/128 A61B2562/0271 A61B2562/043		
FI分类号	A61B1/06.A A61B1/00.300.D G02B23/26.B A61B1/00.550 A61B1/045.640 A61B1/06.510 A61B1/06.612 A61B1/07.730		
F-TERM分类号	2H040/BA10 2H040/CA05 2H040/CA10 4C061/DD01 4C061/DD03 4C061/DD06 4C061/GG01 4C061/HH51 4C061/JJ11 4C061/JJ17 4C061/NN01 4C061/NN05 4C061/PP12 4C061/PP15 4C061/RR02 4C061/RR03 4C061/RR24 4C061/SS04 4C061/SS10 4C161/DD01 4C161/DD03 4C161/DD06 4C161/GG01 4C161/HH51 4C161/JJ11 4C161/JJ17 4C161/NN01 4C161/NN05 4C161/PP12 4C161/PP15 4C161/RR02 4C161/RR03 4C161/RR24 4C161/SS04 4C161/SS10		
代理人(译)	渡辺 隆 村山彥		
优先权	11/512918 2006-08-30 US		
外部链接	Espacenet		

摘要(译)

提供了一种具有基于温度的光源控制的内窥镜装置。 内窥镜系统包括内窥镜装置，该内窥镜装置具有朝向远端穿过的光导，用于与内窥镜装置连通并将照明光传输到内窥镜装置的光导的光源，一种光源控制装置，其与光源通信并控制发送到光导的照明光的强度，以及附接到内窥镜装置的至少一个温度传感器的至少一部分。 温度传感器感测内窥镜装置的至少一部分的温度，产生表示所感测的温度的信号，并且将信号发送到光源控制器。 光源控制装置至少部分地基于表示感测温度的信号来改变发送到光导的照明光的强度。 .The

